A Generalized Non-parametric Approach for Uncertainty Evaluation in Travel Time Prediction Models

نویسندگان

  • Bhaven Naik
  • Laurence R. Rilett
چکیده

A core component within Advanced Traveler Information Systems is travel time information because it is easily understood and perceived by travelers. However, the suggested travel time information should be based not only on historical and real-time conditions, but also on forecasted or ―unknown‖ future conditions. Existing research has focused primarily on developing models that forecast point estimates of the mean travel time that are in close comparison to their respective field values. There has been limited research on any insight into the reliability or uncertainty margin that exists around the forecasted point estimate. As well, these researches have a limitation in that the methodologies suggested are applicable to datasets that are assumed to be independent and identically distributed. However, this is generally not the case for the readily and widely available Intelligent Transportation Systems' data. This dissertation identifies an approach that computes a forecasted travel time as well as an estimate of standard error (the basis for reliability measures in transportation) for highly nonlinear models. Additionally, the approach accounts for the dependent structure of a dataset. The approach is generic and could be applied to other estimation and prediction models as well as other traffic variables, such as flow and speed. Whereas the ordinary bootstrap has been used previously for uncertainty modeling within the travel time prediction environment, it is ideal for dealing with data that are independent and identically distributed. The application of two other bootstrapping methods—the block bootstrap and the gapped bootstrap—is demonstrated. The block bootstrap is currently the best known method for implementing the bootstrap with dependent data. The gapped bootstrap is a recently developed technique that is uniquely suited for handling uncertainties in dependent data. The results suggest that, for the datasets used in this dissertation, the gapped bootstrap adequately captures the dependent structure when compared to the ordinary and block bootstrap methods. As well, unlike the ordinary bootstrap which is suitable only for data that are independent, it appears the gapped bootstrap can adequately address uncertainties for both independent and dependent structured datasets. iv DEDICATION To the memory of my father and young brother You left to be in the place of peace; I wished you had waited just a little more… v ACKNOWLEDGEMENTS As much as I might like to pretend I did all this on my own, it is far from the truth. A large group of different people helped me get through …

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Model for Locating Hubs in a Competitive Environment under Uncertainty: A Robust Optimization Approach

This article explores the development of previous models to determine hubs in a competitive environment. In this paper, by comparing parameters of the ticket price, travel time and the service quality of hub airports, airline hubs are divided into six categories. The degree of importance of travel time and travel cost are determined by a multivariate Lagrange interpolation method, which can pla...

متن کامل

The Special Application of Vehicle Routing Problem with Uncertainty Travel Times: Locomotive Routing Problem

This paper aims to study the locomotive routing problem (LRP) which is one of the most important problems in railroad scheduling in view of involving expensive assets and high cost of operating locomotives. This problem is assigning a fleet of locomotives to a network of trains to provide sufficient power to pull them from their origins to destinations by satisfying a rich set of operational con...

متن کامل

Two-tier Supplier Base Efficiency Evaluation Via Network DEA: A Game Theory Approach

In today's competitive markets, firms try to reduce their supply cost by selecting efficient suppliers using different techniques. Several methods can be applied to evaluate the efficiency of supplier base. This paper develops generalized network data envelopment analysis models to examine the efficiency of two-tier supplier bases under cooperative and non-cooperative strategies where each tier...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

Regression Modeling for Spherical Data via Non-parametric and Least Square Methods

Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016